
discard-analysis-2018

September 7, 2018

1 Switch Discard Technical Report

MeasurementLab

2 Abstract

On February 1st, 2018, during a regular data quality review, we identified an increase in switch
discards at sites with 10Gbps equipment connected to 1Gbps uplinks. We have collected high-
resolution, switch telemetry (DISCO) since June 2016 to monitor traffic microbursts. To assess the
impact of switch discards at 10Gbps sites, we deployed a new ETL parser for the DISCO data
set. By February 15th, we found that affected sites had up to 30% of timebins with discard counts
greater than zero. Immediately, we began trials to test remediation strategies. After identifying
Ethernet flow control as an option, we began live trials the week of the 26th. And, by March 8th,
all affected sites were enabled with Ethernet flow control. The rate of switch discards at sites with
10Gbps equipment is now zero. Since April 13th, the DISCO dataset includes pause frame counts
to observe Ethernet flow-control activity.

The rate of switch discards was approximately 10x less than the rate of retransmissions found
in NDT download tests. In other words, the Internet has a 10x higher discard rate than the M-Lab
switch in the worst case. When we compare download performance before and after enabling
Ethernet flow-control, we find no measurable performance impact of switch discards on the NDT
data set.

This report:

• describes the cause of switch discards.
• describes the switch configuration changes made to prevent switch discards.
• describes the analysis used to conclude that the configuration change was positive.
• describes how to determine whether experiment data was affected by switch discards.

3 Timeline

2018-02-01:

• During data-quality review, we identify high levels of discards in SNMP monitoring.
• We prioritize parsing high-resolution switch data for detailed investigation.

2018-02-15:

1

https://www.measurementlab.net/blog/disco-dataset/
https://www.measurementlab.net/blog/disco-dataset/
https://www.measurementlab.net/blog/traffic-microbursts-and-their-effect-on-internet-measurement/
https://github.com/m-lab/etl/blob/integration/parser/disco.go
https://github.com/m-lab/etl/blob/integration/parser/disco.go

• The DISCO data confirms excessive packet discard rates at many sites.
• We recognize that this is due to 10g hardware with 1g uplinks.
• We begin investigating options for remediation.

2018-02-22 - 27:

• Test & Live trials exploring software solutions: DPDK and qdisc

2018-03-01:

• We recognize that Ethernet flow-control is a better solution than qdisc.
• Live trials using Ethernet flow-control begin.

2018-03-06 - 08:

• We enable flow-control at all 10g sites.

2018-04-13:

• DISCO data set includes pause-frame counts globally.

4 Cause: 10Gbps Hardware to 1Gbps Uplink

M-Lab is upgrading sites to be 10Gbps capable. These upgrades are incremental – first we upgrade
to 10Gbps equipment and preserve the 1Gbps uplink (e.g. “10Gbps-to-1Gbps”). Later, we upgrade
the uplink to 10Gbps (e.g. “10Gbps-to-10Gbps”). Because these upgrades are independent, there
is a period after hardware upgrade and before uplink upgrade where the machines can send at
10Gbps while the uplink can only send at 1Gbps. Because of this difference, a single server could
send data faster than the switch could forward it. Once the switch buffers are full the switch may
discard additional packets until the buffers drain.

5 Remediation: Enable Ethernet Flow-Control

By design, network devices may discard packets as a signal to senders that the network is under
congestion. In fact, some technologies seeking to reduce packet discards turn out to negatively
affect individual or aggregate network performance, i.e. head-of-line blocking, buffer-bloat. As a
measurement platform, M-Lab seeks to balance measurement fidelity of actual network conditions
with test performance under those conditions.

To prevent packet discards in M-Lab switches, we have enabled Ethernet flow-control on all
10Gbps machine-to-switch ports. Ethernet flow-control prevents switch discards due to tail drop
in the single-machine, 10Gbps-to-1Gbps configuration. As well, Ethernet flow-control prevents
switch discards due to fan-in congestion in the multi-machine, 10Gbps-to-10Gbps configuration.
Both scenarios introduce no more contention between machines than already exists from the up-
link capacity.

While Ethernet flow-control is known to cause “head of line blocking” in certain circumstances,
these do not apply to M-Lab sites. In particular, M-Lab sites are optimized for sending “north-
south” traffic (e.g. upload / download through the switch) and never “east-west” traffic (e.g. be-
tween machines). This eliminates all sources of “external head of line blocking” from machine-
to-machine traffic. As well, our configuration enables flow-control only between the machine-to-
switch link, so cannot contribute to “congestion spreading” beyond the switch. Because Ethernet

2

https://en.wikipedia.org/wiki/Ethernet_flow_control
https://en.wikipedia.org/wiki/Tail_drop
https://en.wikipedia.org/wiki/Head-of-line_blocking

flow-control can contribute to problems in more complex configurations, “everybody knows” that
it should not be turned on. However, M-Lab’s unique setup makes Ethernet flow-control helpful.

Since 2016-06, the DISCO data set has recorded switch telemetry at 10 second intervals, includ-
ing packet discards. Since enabling Ethernet flow-control the occurrence of packet discards has
reduced to zero. In 2018-04, we added pause-frame counters to the DISCO data set. The pause-
frame counters allow us to observe flow-control in action, and we have not observed bad NDT
performance correlated with Ethernet flow-control.

6 Analysis

As M-Lab client integrations have grown over time, so has the percentage of site uplink capacity.
Figure 1 shows the increase of median uplink utilization over a two year period using unicast
transfer rates. Between late 2016 and late 2018, the daily median transfer rates have increased
roughly 10x, more in some sites. Figure 2 shows the corresponding change in the median NDT
download rates over the same period.

In [1]: # To load figures outside browser, use "%matplotlib" with no argument.
%matplotlib inline

import os
import math
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.dates as dates
import matplotlib.pyplot as plt
import matplotlib.ticker
import datetime
import collections
import itertools

from scipy import stats

Depends on: pip install sklearn
from sklearn.model_selection import train_test_split

Some matplotlib features are version dependent.
assert(matplotlib.__version__ >= '2.1.2')

Depends on: pip install --upgrade google-cloud-bigquery
from google.cloud import bigquery

def run_query(query, project='measurement-lab'):
client = bigquery.Client(project=project)
job = client.query(query)

3

results = collections.defaultdict(list)
for row in job.result(timeout=3000):

for key in row.keys():
results[key].append(row.get(key))

return pd.DataFrame(results)

def unlog(x, pos):
"""Formats the x axis for histograms taken on the log of values."""
v = math.pow(10, x)
frac, whole = math.modf(v)
if frac > 0:

return '%.1f' % v
else:

return '%d' % whole

def hist(vals, bin_count, log=True, cdf=False):
"""Produces hist or cdf values for smooth plots."""
if log:

r = [math.log10(x) for x in vals]
else:

r = vals

m, bins = np.histogram(r, bin_count, normed=True)
m = m.astype(float)

tops = m
if cdf:

tops = np.cumsum(m)
total = sum(m)
tops = [float(t) / total for t in tops]

return tops, bins

matplotlib.rcParams['figure.dpi']= 150
logFormatter = matplotlib.ticker.FuncFormatter(unlog)

In [2]: def plot_df(
df, xname='', yname='',
cname='', bins=None, cdf=False,
xlog=None, ylog=False,
fig_by='', axes_by='', group_by='',
figsize=(6,8), axes=(1,1),
label='{group}',
xlabel='', ylabel='',

4

xlim=(), ylim=(),
fx=list, fy=list,
suptitle='',
title='',
legend={},
figmap=None,
fxn=None,
info=False):
"""Creates a scatter or histogram plot from df, split on mulitple dimension.

plot_df helps plot structured data frames as simple scatter or histograms by
slicing the dataframe along distinct values of some column names. For
example, a df that includes a "state" column could be used to create a new
figure for every state with the `fig_by="state"` parameter. Within a single
figure, it's possible to slice the data into multiple axes using another
column, for example one named "city" using `axes_by="city"`.

Args:
df: pandas.DataFrame, structured data to plot.
xname: str, name of df column to use as x-axis. Use only with yname.
yname: str, name of df column to use as y-axis. Use only with xname.
cname: str, name of df column to calculate the histogram. Use only with

cdf, and bins.
cdf: bool, whether to plot histogram as a CDF. Default is as a PDF. Use

only with cname and bins.
bins: int or callable, the number of histogram bins. May be a function.
xlog: bool, whether to take the log of histogram. Use only with cname.
ylog: bool, whether to plot the y axis using semilog scale.
fig_by: str, name of column where distinct values split data into multiple

figures.
axes_by: str, name of column where distinct values split data into

multiple axis panels on a single figure.
group_by: str, name of column where distinct values are all plotted on the

same axis.
figsize: (int, int), dimensions of figure. Default (6, 8).
axes: (int, int), arrangement of axes within figure. Default (1, 1).
label: str, the legend format per data series. Used as a format string.

Other parameters available are {figure}, {axis}, {size}.
Default {group}.

xlabel: str, the xlabel value. Used as a format string. Other parameters
available are {figure}, {axis}, {size}.

ylabel: str, the ylabel value. Used as a format string like xlabel.
xlim: (xmin, xmax), explicitly set minimum and maximum values of x axis.
ylim: (ymin, ymax), explicitly set minimum and maximum values of y axis.
fx: func, if set, operate on x axis series data before plotting.
fy: func, if set, operate on y axis series data before plotting.
suptitle: str, figure title.
title: str, axis title.

5

legend: **legend_args,
figmap: the figmap value returned by an earlier cal of plot_df. May be

used to overlay values from multiple data frames. Must use the same
fig_by, axes_by, and group_by values.

fxn: callable that accepts parameters (r, **kwargs). Kwargs will include
figure, axis, group, names and data set size. Only called for
histogram plots.

info: bool, whether to log additional info messages.
Returns:

dict of str to (figures, axes) tuples
"""
def log_info(f):

if info:
print f

def get_label_color(ax, label):
"""Returns the color of the collection with given label."""
color = None
for c in ax.collections:

if c.get_label() == label:
color = c.get_facecolors()[0]

return color

check_colors = figmap is not None
if figmap is None:

log_info('new figmap')
figmap = {}

scatter = None
if (xname and yname):

scatter = True
if cname:

scatter = False
if scatter is None:

raise Exception('Provide xname and yname or cname')

default_names = set(['default'])

figure_names = set(df[fig_by]) if fig_by else default_names
for f in sorted(figure_names):

if f in figmap:
log_info('loading figmap for %s' % f)
fig, ax, ax_index = figmap[f]

else:
fig = plt.figure(figsize=figsize)
ax = fig.subplots(axes[0], axes[1], squeeze=False)
ax_index = list(itertools.product(range(axes[0]), range(axes[1])))
log_info('saving figmap for %s' % f)

6

figmap[f] = (fig, ax, ax_index)

df_fig = df if f == 'default' else df[df[fig_by] == f]

axes_names = set(df_fig[axes_by]) if axes_by else default_names
for p, a in enumerate(sorted(axes_names)):

if p >= len(ax_index):
print 'SKIPPING', p, f, a, 'too few axes positions'
continue

if a == 'default':
df_axes = df_fig

else:
df_axes = df_fig[df_fig[axes_by] == a]

i, j = ax_index[p]
group_names = set(df_axes[group_by]) if group_by else default_names
for g in sorted(group_names):

if g == 'default':
df_g = df_axes

else:
df_g = df_axes[df_axes[group_by] == g]

if scatter:
x = fx(df_g[xname])
y = fy(df_g[yname])
l = label.format(figure=f, axis=a, group=g)
kw = {}
found_color = None
if check_colors:

When a figmap is given, and the current label matches
an existing label, re-use the original color.
found_color = get_label_color(ax[i][j], l)

if found_color is not None:
kw['color'] = found_color

else:
kw['label'] = l

ax[i][j].scatter(x, y, s=1, **kw)

else:
r = df_g[cname]
if bins is None:

size = int(math.sqrt(len(r)))
else:

size = bins(r)
if fxn:

7

result = fxn(r, figure=f, axis=a, group=g, size=size)
log_info("%s %s %s %s %s" % (f, a, g, size, len(r)))
h_tops, h_bins = hist(r, size, log=xlog , cdf=cdf)
l = label.format(figure=f, axis=a, group=g, size=size,

result=result)
ax[i][j].plot(h_bins[:-1], h_tops, label=l)

if i != len(ax)-1:
ax[i][j].set_xticklabels([])

if title:
ax[i][j].set_title(title.format(figure=f, axis=a, group=g))

if ylabel:
ax[i][j].set_ylabel(ylabel.format(figure=f, axis=a, group=g))

if xlabel:
ax[i][j].set_xlabel(xlabel.format(figure=f, axis=a, group=g))

if xlim:
ax[i][j].set_xlim(xlim)

if ylim:
ax[i][j].set_ylim(ylim)

ax[i][j].grid(color='#dddddd')
ax[i][j].legend(fontsize='x-small', **legend)
if scatter:

ax[i][j].tick_params(axis='x', labelrotation=-90)
if xlog:

ax[i][j].xaxis.set_major_formatter(logFormatter)
if ylog:

ax[i][j].semilogy()

if suptitle:
fig.suptitle(suptitle.format(figure=f))

fig.tight_layout(rect=[0, 0.03, 1, 0.95])

return figmap

def plot_scatter(df, xname, yname, **kwargs):
return plot_df(df, xname=xname, yname=yname, **kwargs)

def plot_hist(df, cname, bins=None, **kwargs):
return plot_df(df, cname=cname, bins=bins, **kwargs)

8

7 Daily Median Uplink Utilization

In [3]: df_disco_pct = run_query("""
#standardSQL

WITH measurementlab_switch_dedup AS (
SELECT

metric,
REGEXP_EXTRACT(hostname, r'(mlab[1-4].[a-z]{3}[0-9]{2}).*') AS hostname,
sample.timestamp AS ts,
sample.value AS value

FROM
`measurement-lab.base_tables.switch*`,
UNNEST(sample) AS sample

WHERE
metric = 'switch.octets.uplink.tx'

AND REGEXP_CONTAINS(hostname, r"mlab1.(dfw|lga|nuq)\d\d")
GROUP BY

hostname, metric, ts, value
)

SELECT
UPPER(REGEXP_EXTRACT(hostname, r'mlab1.([a-z]{3})[0-9]{2}.*')) AS metro,
REGEXP_EXTRACT(hostname, r'mlab1.([a-z]{3}[0-9]{2}).*') AS site,
UNIX_SECONDS(TIMESTAMP_TRUNC(ts, DAY)) AS ts,
0.8 * APPROX_QUANTILES(value, 101)[ORDINAL(50)] as bytes_50th

FROM
measurementlab_switch_dedup

WHERE
hostname IS NOT NULL

GROUP BY
hostname, ts

ORDER BY
hostname, ts

""")

In [4]: _ = plot_scatter(
df_disco_pct, 'ts', 'bytes_50th',
axes_by='metro', group_by='site',
axes=(3, 1), figsize=(7, 9),
suptitle='Daily Median Uplink Utilization',
ylabel="Mbps",
title='{axis}',

9

xlim=(pd.to_datetime("2016-05-31"), pd.to_datetime("2018-08-01")),
ylim=(1e4, 1e9),
fx=lambda l: [pd.to_datetime(t, unit='s') for t in l],
legend={'loc':3, 'ncol':7, 'columnspacing':1},
ylog=True)

10

Figure 1: Daily Median Uplink Utilization. Rates from select US sites from 2016-06 to 2018-08.
Rates include all unicast packets (UDP & TCP) according to the DISCO data set.

8 Median NDT Download Rates

In [5]: df_ndt_all = run_query("""
WITH measurementlab_ndt_dedup AS (
SELECT

connection_spec.server_hostname as server_hostname,
web100_log_entry.connection_spec.remote_ip as remote_ip,
log_time,
(8 * (web100_log_entry.snap.HCThruOctetsAcked / (

web100_log_entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd))) AS download_mbps

FROM
`measurement-lab.release.ndt_all`

WHERE
REGEXP_CONTAINS(connection_spec.server_hostname, r"(lga|dfw|nuq)\d\d")

AND web100_log_entry.snap.HCThruOctetsAcked >= 1000000
AND (web100_log_entry.snap.SndLimTimeRwin +

web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) >= 9000000

AND (web100_log_entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) < 600000000

AND connection_spec.data_direction = 1
AND web100_log_entry.connection_spec.remote_ip != "45.56.98.222"
AND web100_log_entry.connection_spec.remote_ip != "2600:3c03::f03c:91ff:fe33:819"
AND web100_log_entry.connection_spec.remote_ip != "35.225.75.192"
AND web100_log_entry.connection_spec.remote_ip != "35.192.37.249"
AND web100_log_entry.connection_spec.remote_ip != "35.193.254.117"
AND log_time >= TIMESTAMP("2016-06-01")

GROUP BY
connection_spec.server_hostname,
log_time,
web100_log_entry.connection_spec.remote_ip,
web100_log_entry.connection_spec.local_ip,
web100_log_entry.connection_spec.remote_port,
web100_log_entry.connection_spec.local_port,
download_mbps

)

SELECT

11

metro,
site,
day,
APPROX_QUANTILES(download_mbps, 101)[ORDINAL(50)] as download_mbps,
count(*) as count

FROM
(
SELECT

UPPER(REGEXP_EXTRACT(server_hostname, r"([a-z]{3})[0-9]{2}")) as metro,
REGEXP_EXTRACT(server_hostname, r"([a-z]{3}[0-9]{2})") as site,
TIMESTAMP_TRUNC(log_time, DAY) as day,
MAX(download_mbps) as download_mbps

FROM
measurementlab_ndt_dedup

GROUP BY
metro, site, day, remote_ip

)

GROUP BY
metro, site, day

ORDER BY
day

""")

In [6]: _ = plot_scatter(
df_ndt_all, 'day', 'download_mbps',
axes_by='metro', group_by='site',
axes=(3, 1), figsize=(8, 10),
suptitle='Median NDT Download Rates',
ylabel="Mbps",
title='{axis}',
xlim=(pd.to_datetime("2016-05-31"), pd.to_datetime("2018-08-01")),
ylim=(0, 50),
fx=lambda l: [pd.to_datetime(t) for t in l],
legend={'loc':3, 'ncol':7, 'columnspacing':1})

12

Figure 2: Daily median NDT download rates from select US sites from 2017-05 to 2018-08.
Multiple tests from the same remote_ip are counted only once. Figure 2 shows median client
behavior changing over time. These client behavior changes started before the hardware upgrades
(so are unaffected by the switch discards).

13

9 Daily Packet Loss Ratio

In [7]: df_disco_ratio = run_query("""
#standardSQL

WITH measurementlab_switch_dedup AS (
SELECT

metric,
REGEXP_EXTRACT(hostname, r'(mlab[1-4].[a-z]{3}[0-9]{2}).*') AS hostname,
sample.timestamp AS ts,
sample.value AS value

FROM
`measurement-lab.base_tables.switch*`,
UNNEST(sample) AS sample

WHERE
(metric LIKE 'switch.discards.uplink.tx'

OR metric LIKE 'switch.unicast.uplink.tx')
AND REGEXP_CONTAINS(hostname, r"mlab1.(dfw|lga|nuq)\d\d")

GROUP BY
hostname, metric, ts, value

)

SELECT
UPPER(REGEXP_EXTRACT(hostname, r'mlab1.([a-z]{3})[0-9]{2}.*')) AS metro,
REGEXP_EXTRACT(hostname, r'mlab1.([a-z]{3}[0-9]{2}).*') AS site,
hostname,
ts,
IF(total > 0, discards / total, 0) as ratio

FROM (
SELECT

hostname,
UNIX_SECONDS(TIMESTAMP_TRUNC(ts, DAY)) AS ts,
SUM(IF(metric = "switch.discards.uplink.tx", value, 0)) AS discards,
SUM(IF(metric = "switch.unicast.uplink.tx", value, 0)) AS total

FROM
measurementlab_switch_dedup

WHERE
hostname IS NOT NULL

GROUP BY
hostname, ts

HAVING
discards < total

ORDER BY
hostname, ts

14

)
GROUP BY
hostname, ts, ratio

HAVING
ratio < 0.01

ORDER BY
hostname, ts

""")

In [8]: _ = plot_scatter(
df_disco_ratio, 'ts', 'ratio',
axes_by='metro', group_by='site',
axes=(3, 1), figsize=(8, 10),
suptitle='Daily Packet Loss Ratio (discards / unicast)',
ylabel="Ratio",
title='{axis}',
xlim=(pd.to_datetime("2016-05-31"), pd.to_datetime("2018-08-01")),
ylim=(1e-6, 1e-1),
fx=lambda l: [pd.to_datetime(t, unit='s') for t in l],
legend={'loc':2},
ylog=True)

15

Figure 3: Switch Discard Ratio calculated using the daily switch uplink discard count divided
by the total uplink packet count. DFW had the globally highest rate of discards. Typically other
sites were less than 0.01% (1 packet per 10,000 packets).

16

10 Median NDT Retransmission Ratio

In [9]: df_ndt_retrans = run_query("""
WITH measurementlab_ndt_dedup AS (
SELECT

connection_spec.server_hostname as hostname,
web100_log_entry.connection_spec.remote_ip as remote_ip,
log_time,
web100_log_entry.snap.SegsRetrans as SegsRetrans,
web100_log_entry.snap.SegsOut as SegsOut

FROM
`measurement-lab.release.ndt_all`

WHERE
REGEXP_CONTAINS(connection_spec.server_hostname, r"(lga|dfw|nuq)\d\d")

AND web100_log_entry.snap.HCThruOctetsAcked >= 1000000
AND (web100_log_entry.snap.SndLimTimeRwin +

web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) >= 9000000

AND (web100_log_entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) < 600000000

AND connection_spec.data_direction = 1
AND web100_log_entry.connection_spec.remote_ip != "45.56.98.222"
AND web100_log_entry.connection_spec.remote_ip != "2600:3c03::f03c:91ff:fe33:819"
AND web100_log_entry.connection_spec.remote_ip != "35.225.75.192"
AND web100_log_entry.connection_spec.remote_ip != "35.192.37.249"
AND web100_log_entry.connection_spec.remote_ip != "35.193.254.117"
AND log_time >= TIMESTAMP("2016-06-01")

GROUP BY
connection_spec.server_hostname,
log_time,
web100_log_entry.connection_spec.remote_ip,
web100_log_entry.connection_spec.local_ip,
web100_log_entry.connection_spec.remote_port,
web100_log_entry.connection_spec.local_port,
SegsRetrans,
SegsOut

)

SELECT
UPPER(REGEXP_EXTRACT(hostname, r"([a-z]{3})[0-9]{2}")) as metro,
REGEXP_EXTRACT(hostname, r"([a-z]{3}[0-9]{2})") as site,
day,
APPROX_QUANTILES(ratio, 101)[ORDINAL(50)] AS median_ratio,
count(*) as count

17

FROM
(
SELECT

hostname,
TIMESTAMP_TRUNC(log_time, DAY) as day,
MAX(SAFE_DIVIDE(SegsRetrans, SegsOut)) as ratio

FROM
measurementlab_ndt_dedup

GROUP BY
hostname,
day,
remote_ip

)

GROUP BY
hostname, day

ORDER BY
day

""")

In [10]: _ = plot_scatter(
df_ndt_retrans, 'day', 'median_ratio',
axes_by='metro', group_by='site',
axes=(3, 1), figsize=(8, 10),
suptitle='Median NDT Retransmission Ratio - (SegsRetran / SegsOut)',
ylabel="Ratio",
title='{axis}',
xlim=(pd.to_datetime("2016-05-31"), pd.to_datetime("2018-08-01")),
ylim=(1e-6, 1e-1),
fx=lambda l: [pd.to_datetime(t) for t in l],
legend={'loc':2},
ylog=True)

18

Figure 4: NDT Segment Retransmission Ratio calculated using the web100 metrics for SegsRe-
trans and SegsOut. Multiple tests from the same remote_ip are counted only once. Notice that the
packet discard rates for the Internet are more than 10x the switch discard rates.

19

11 Combined Chart

In [11]: f = plot_scatter(
df_disco_ratio, 'ts', 'ratio',
axes_by='metro', group_by='site',
axes=(3, 1), figsize=(8, 10),
suptitle='Combination - Daily Packet Discard Ratio & NDT Retransmission Ratio',
ylabel="Ratio",
title='{axis}',
xlim=(pd.to_datetime("2016-05-31"), pd.to_datetime("2018-08-01")),
ylim=(1e-6, 1e-1),
fx=lambda l: [pd.to_datetime(t, unit='s') for t in l],
legend={'loc':2},
ylog=True)

_ = plot_scatter(
df_ndt_retrans, 'day', 'median_ratio',
axes_by='metro', group_by='site',
axes=(3, 1), figsize=(8, 10),
ylabel="Ratio",
title='{axis}',
xlim=(pd.to_datetime("2016-05-31"), pd.to_datetime("2018-08-01")),
ylim=(1e-6, 1e-1),
fx=lambda l: [pd.to_datetime(t) for t in l],
legend={'loc':2},
ylog=True, figmap=f)

20

Figure 5: Combination of Switch Discard Ratio and NDT Retransmission Ratios. When com-
paring figures 3 and 4, we see that NDT retransmissions are consistently 4x to 10x higher than the
switch loss ratio, with no changes once flow control was enabled.

11.1 Compare NDT Download Distributions

To assess whether the switch discards measurably affected NDT tests, we compare performance
before and after the Ethernet flow-control configuration change. To reduce the effect of dynamic

21

client populations, we selected a cohort that ran tests in both periods.
For tests used in this analysis, all of the following must be true: * the client ran more than 10

download tests between 2018-02-11 and 2018-02-25 * the client ran more than 10 download tests
between 2018-03-11 and 2018-03-25 * the client ran these tests to machines in the same metro area

We assume that clients from this cohort have the same connectivity in both periods and that
the number of tests reduce variation caused by external factors.

We take the maximum download rate per client and then operate on the distribution of all
maximum client rates per site.

Figure 6 shows the distribution of test rates before and after the configuration change as a
PDF. We compare the maximum download rates per remote_ip, as well as the average download
rates per remote_ip. Both distributions emphasize the similarity. We quantify the similarity using
the ks-test. The null hypothesis is that the measurements are from the same distribution. And,
we would reject the null hypothesis if the p-value is below 1%. In all cases, we accept the null
hypothesis – these distributions are not measurably different.

In [12]: df_ndt_variance = run_query("""
WITH measurementlab_ndt_dedup AS (

SELECT
UPPER(REGEXP_EXTRACT(connection_spec.server_hostname,

r'mlab[1-4].([a-z]{3})[0-9]{2}.*')) AS metro,
REGEXP_EXTRACT(connection_spec.server_hostname,

r'mlab[1-4].([a-z]{3}[0-9]{2}).*') AS site,
REGEXP_EXTRACT(connection_spec.server_hostname,

r'(mlab[1-4].[a-z]{3}[0-9]{2}).*') AS hostname,
web100_log_entry.connection_spec.remote_ip as remote_ip,
log_time,
(8 * (web100_log_entry.snap.HCThruOctetsAcked / (

web100_log_entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd))) AS download_mbps

FROM
`measurement-lab.release.ndt_all`

WHERE
(TIMESTAMP_TRUNC(log_time, DAY) BETWEEN

TIMESTAMP("2018-02-11") AND TIMESTAMP("2018-02-25")
OR TIMESTAMP_TRUNC(log_time, DAY) BETWEEN

TIMESTAMP("2018-03-11") AND TIMESTAMP("2018-03-25"))
AND REGEXP_CONTAINS(connection_spec.server_hostname, r"(dfw)\d\d")
AND web100_log_entry.snap.HCThruOctetsAcked >= 1000000
AND (web100_log_entry.snap.SndLimTimeRwin +

web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) >= 9000000

AND (web100_log_entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) < 600000000

22

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

AND connection_spec.data_direction = 1
AND web100_log_entry.connection_spec.remote_ip != "45.56.98.222"
AND web100_log_entry.connection_spec.remote_ip != "2600:3c03::f03c:91ff:fe33:819"
AND web100_log_entry.connection_spec.remote_ip != "35.225.75.192"
AND web100_log_entry.connection_spec.remote_ip != "35.192.37.249"
AND web100_log_entry.connection_spec.remote_ip != "35.193.254.117"
AND log_time >= TIMESTAMP("2016-06-01")

GROUP BY
connection_spec.server_hostname,
log_time,
web100_log_entry.connection_spec.remote_ip,
web100_log_entry.connection_spec.local_ip,
web100_log_entry.connection_spec.remote_port,
web100_log_entry.connection_spec.local_port,
download_mbps

)

SELECT
metro,
site,
hostname,
CASE

WHEN TIMESTAMP_TRUNC(log_time, DAY) BETWEEN
TIMESTAMP("2018-02-11") AND TIMESTAMP("2018-02-25") THEN 'before-2w'

WHEN TIMESTAMP_TRUNC(log_time, DAY) BETWEEN
TIMESTAMP("2018-03-11") AND TIMESTAMP("2018-03-25") THEN 'after-2w'

ELSE 'what'
END AS period,
remote_ip,
STDDEV(download_mbps) AS download_stddev,
(STDDEV(download_mbps) / AVG(download_mbps)) AS download_cv,
MAX(download_mbps) AS download_max,
MIN(download_mbps) AS download_min,
AVG(download_mbps) AS download_avg

FROM
measurementlab_ndt_dedup

WHERE
remote_ip IN(

SELECT remote_ip
FROM (

SELECT remote_ip, count(*) as c1
FROM measurementlab_ndt_dedup
WHERE TIMESTAMP_TRUNC(log_time, DAY) BETWEEN

TIMESTAMP("2018-02-11") AND TIMESTAMP("2018-02-25")

23

GROUP BY remote_ip
HAVING c1 > 10

) INNER JOIN (
SELECT remote_ip AS remote_ip, count(*) as c2
FROM measurementlab_ndt_dedup
WHERE TIMESTAMP_TRUNC(log_time, DAY) BETWEEN

TIMESTAMP("2018-03-11") AND TIMESTAMP("2018-03-25")
GROUP BY remote_ip
HAVING c2 > 10

) USING (remote_ip))

GROUP BY
metro, site, hostname, period, remote_ip

HAVING
download_stddev is not NULL

""")

In [13]: values = {}
def ks_compare(r, figure='', axis='', group='', size=''):

values["%s-%s-%s" % (figure, axis, group)] = r
if group == 'before-2w':

after = values["%s-%s-%s" % (figure, axis, 'after-2w')]
result = stats.ks_2samp(r, after)
if result.pvalue < 0.01:

print 'diff', figure, axis, result
return result.pvalue

return 0

_ = plot_hist(
df_ndt_variance, 'download_max', lambda r: int(math.sqrt(len(r))),
fig_by='metro', axes_by='site', group_by='period',
suptitle='Distribution of NDT Downloads - MAX(per remote_ip)',
label='{group} (p: {result:.2f})',
title='{axis}', axes=(3, 2),
xlim=(math.log10(.01), math.log10(1000)),
cdf=False, xlog=True, figsize=(9, 7),
fxn=ks_compare)

values = {}
_ = plot_hist(

df_ndt_variance, 'download_avg', lambda r: int(math.sqrt(len(r))),
fig_by='metro', axes_by='site', group_by='period',
suptitle='Distribution of NDT Downloads - AVERAGE(per remote_ip)',
label='{group} (p: {result:.2f})',
title='{axis}', axes=(3, 2),
xlim=(math.log10(.01), math.log10(1000)),
cdf=False, xlog=True, figsize=(9, 7),

24

fxn=ks_compare)

25

Figure 6: NDT Download Distribution. For every client in the cohort, we take the maximum
and average download rate per period. Then plot the distribution of performances before and after
the configuration change. Ethernet flow-control does not change the performance distributions.

11.2 NDT Test Counts

NDT is a single-stream TCP test and more sensitive to network disturbances than multi-stream
tests. By design, a packet loss in any single flow of a multi-stream test is less significant because
the remaining flows may compensate. Using the Sidestream data set we found similar results for
multi-stream tests on M-Lab.

Finally, the number of NDT tests potentially affected by switch discards is relatively small.
The globally worst case was at DFW02, where approximately 50% of tests ran during periods with
nonzero switch discards. If analysts would like to identify these tests as part of their analysis, see
the query in the next section.

In [14]: import time
def query(site):

print 'running query', site, time.ctime()
return """

CREATE TEMPORARY FUNCTION
timeBin(ts_usec INT64,

size INT64) AS (CAST(TRUNC(ts_usec / 1e6 / 10) * 10 AS INT64));

26

https://www.measurementlab.net/tests/sidestream/

WITH ndt_test_ids_with_discards AS (
SELECT

ndt.test_id as test_id,
SUM(disco.discards) AS discards

FROM (
SELECT

hostname,
UNIX_SECONDS(sample.timestamp) - 10 AS tstart,
UNIX_SECONDS(sample.timestamp) AS tend,
sample.value AS discards

FROM
`measurement-lab.base_tables.switch*`,
UNNEST(sample) AS sample

WHERE
metric = 'switch.discards.uplink.tx'
AND sample.timestamp BETWEEN

TIMESTAMP("2016-06-01") AND TIMESTAMP("2018-08-01")
AND hostname = "mlab1."""+site+""".measurement-lab.org"

GROUP BY
hostname,
tstart,
tend,
discards

HAVING
discards > 0

) AS disco
JOIN (

SELECT
REGEXP_EXTRACT(connection_spec.server_hostname,

r"(mlab1."""+site+""".measurement-lab.org)") as hostname,
timeBin(web100_log_entry.snap.StartTimeStamp, 10) AS tstart,
timeBin(web100_log_entry.snap.StartTimeStamp, 10) + 20 AS tend,
test_id

FROM
`measurement-lab.release.ndt_all`

WHERE
log_time BETWEEN TIMESTAMP("2016-06-01") AND TIMESTAMP("2018-08-01")

AND connection_spec.data_direction = 1
AND (connection_spec.server_hostname =

"mlab1."""+site+""".measurement-lab.org"
OR connection_spec.server_hostname =

"ndt.iupui.mlab1."""+site+""".measurement-lab.org")
AND (web100_log_entry.snap.SndLimTimeRwin +

web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) >= 9000000

27

AND (web100_log_entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) < 600000000

AND web100_log_entry.snap.HCThruOctetsAcked >= 1000000

GROUP BY
test_id,
hostname,
tstart,
tend) AS ndt

ON (disco.hostname = ndt.hostname
AND (disco.tstart = ndt.tstart OR disco.tend = ndt.tend))

GROUP BY
test_id

)

SELECT
day, metro, site, hostname, discards, COUNT(*) as count

FROM
(

SELECT
TIMESTAMP_TRUNC(log_time, DAY) as day,
UPPER(REGEXP_EXTRACT(connection_spec.server_hostname,

r'mlab[1-4].([a-z]{3})[0-9]{2}.*')) AS metro,
REGEXP_EXTRACT(connection_spec.server_hostname,

r'mlab[1-4].([a-z]{3}[0-9]{2}).*') AS site,
REGEXP_EXTRACT(connection_spec.server_hostname,

r'(mlab[1-4].[a-z]{3}[0-9]{2}).*') AS hostname,
CASE

WHEN test_id IN(SELECT test_id FROM ndt_test_ids_with_discards) THEN 'non-zero'
ELSE 'zero'

END as discards

FROM
`measurement-lab.release.ndt_all`

WHERE
log_time BETWEEN TIMESTAMP("2016-06-01") AND TIMESTAMP("2018-08-01")

AND connection_spec.data_direction = 1
AND (connection_spec.server_hostname =

"mlab1."""+site+""".measurement-lab.org"
OR connection_spec.server_hostname =

"ndt.iupui.mlab1."""+site+""".measurement-lab.org")
AND (web100_log_entry.snap.SndLimTimeRwin +

web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) >= 9000000

28

AND (web100_log_entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) < 600000000

AND web100_log_entry.snap.HCThruOctetsAcked >= 1000000
)

GROUP BY
day, metro, site, hostname, discards

"""

df_test_counts = pd.concat([
run_query(query("dfw01")),
run_query(query("dfw02")),
run_query(query("dfw03")),
run_query(query("dfw04")),
run_query(query("dfw05")),
run_query(query("dfw06")),

])

running query dfw01 Fri Sep 7 12:06:27 2018
running query dfw02 Fri Sep 7 12:07:04 2018
running query dfw03 Fri Sep 7 12:11:29 2018
running query dfw04 Fri Sep 7 12:13:41 2018
running query dfw05 Fri Sep 7 12:16:32 2018
running query dfw06 Fri Sep 7 12:19:54 2018

In [15]: _ = plot_scatter(
df_test_counts, 'day', 'count',
fig_by='metro', axes_by='site', group_by='discards',
suptitle='NDT Test Counts (with or without discards)',
label='{group}',
title='{axis}',
axes=(3, 2), figsize=(12, 10),
ylim=(-200, 30000),
xlim=(pd.to_datetime("2016-05-31"), pd.to_datetime("2018-08-01")),
fx=lambda l: [pd.to_datetime(t) for t in l])

29

Figure 7: NDT Test Counts. Counts are separated into those with discards (any non-zero
amount) and those without discards (strictly zero). The worst site globally was dfw02 where tests
run with discards about half the time. All other sites see significantly less.

12 Identifying Discard Events During Tests

M-Lab switches have separate buffers for inbound and outbound traffic. We have observed no
discards from inbound traffic. This means that only “download” tests may be affected.

The “NDT Test Counts” query above identifies all NDT test_ids with nonzero discards for the
given site name. Adjust the dates or machine names to meet your needs.

13 Alternatives Considered

Before deploying the Ethernet flow-control configuration changes we considered and rejected sev-
eral alternative strategies.

30

13.1 No Changes

There was anecdotal evidence that a switch discard might increase performance of high through-
put clients without congestion signals from other sources in the network. As well, this provides
a data set to investigate the question: is download performance impacted by switch discards.
Ultimately, however, we believe that the M-Lab platform as a measurement instrument should
minimize loss.

13.2 Hardware

Some NICs support multiple performance modes depending on the link layer or software con-
figuration. In our case, the Mellanox ConnectX-3 NICs are single-mode, supporting only 10Gbps
operation. So, configuring them to run at 1Gbps natively was not an option.

13.3 Linux Queuing Disciplines

Linux Queuing Disciplines (a.k.a. “qdisc”) is a software based throttle that still resulted in dis-
cards. However, because these discards were deep in the Linux kernel, we had no way to monitor
them. So, this would be worse than doing nothing because “doing nothing” would still allow us
to monitor the switch discards in the DISCO data set.

13.4 Data Plane Development Kit (DPDK)

The 2.6.32 kernel is incompatible with supported versions of the DPDK.

14 References

http://www.dell.com/downloads/global/products/pwcnt/en/Flow-Control-and-Network-
performance-with-PowerConnect.pdf

31

	Switch Discard Technical Report
	Abstract
	Timeline
	Cause: 10Gbps Hardware to 1Gbps Uplink
	Remediation: Enable Ethernet Flow-Control
	Analysis
	Daily Median Uplink Utilization
	Median NDT Download Rates
	Daily Packet Loss Ratio
	Median NDT Retransmission Ratio
	Combined Chart
	Compare NDT Download Distributions
	NDT Test Counts

	Identifying Discard Events During Tests
	Alternatives Considered
	No Changes
	Hardware
	Linux Queuing Disciplines
	Data Plane Development Kit (DPDK)

	References

